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[11 In this paper we derive analytical solutions to statistical moments for transient
saturated flow in two-dimensional, bounded, randomly heterogeneous porous media. By
perturbation expansions, we first derive partial differential equations governing the zeroth-
order head 4?) and the first-order head term h(l), where orders are in terms of the standard
deviation of the log transmissivity. We then solve 2 and 4" analytically, both of
which are expressed as infinite series. The head perturbation 4" is then used to derive
expressions for autocovariance of the hydraulic head and the cross covariance between the
log transmissivity and head. The expressions for the mean flux and flux covariance
tensor are formulated from the head moments based on Darcy’s law. Using numerical
examples, we demonstrate the convergence of these solutions. We also examine the
accuracy of these first-order solutions by comparing them with solutions from both Monte

Carlo simulations and the numerical moment equation method.
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1. Introduction

[2] Geological formations are inherently heterogeneous
and exhibit a high degree of variability in medium properties
such as hydraulic conductivity and porosity. Medium het-
erogeneity has significant impacts on fluid flow and solute
transport in the subsurface. Although these formations are
intrinsically deterministic, we usually have incomplete
knowledge on their properties. As a result, it is common to
treat the medium properties as stochastic processes and solve
the flow and transport problems in randomly heterogeneous
media in a stochastic framework. In the last two decades,
many stochastic theories have been developed to obtain
the statistical moments for fluid flow and solute transport
in such heterogeneous media [e.g., Freeze, 1975; Smith
and Freeze, 1979; Dagan, 1979, 1982, 1989; Dettinger
and Wilson, 1981; Gutjahr and Gelhar, 1981; Mizell et al.,
1982; Gelhar and Axness, 1983; Rubin and Dagan, 1989;
Neuman and Orr, 1993; Gelhar, 1993; Osnes, 1995, 1998;
Tartakovsky and Neuman, 1998; Zhang, 1999; Guadagnini
and Neuman, 1999a, 1999b]. Zhang [2002] reviewed some
techniques used in solving transient flow in heterogeneous
porous media.

[3] Analytical solutions to the statistical moments of satu-
rated flow are only available for some special cases such as
steady state uniform mean flow in an unbounded domain
[Dagan, 1985; Gelhar, 1993; Rubin, 1990; Rubin and Dagan,
1992; Zhang and Neuman, 1992] and steady state uniform
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mean flow in a rectangular domain [Osnes, 1995, 1998].
Under the assumption of steady state uniform mean flow in an
infinite domain, Dagan [1985] derived an analytical solution
for the head variogram with an exponential covariance
function of the log hydraulic conductivity. Under similar
assumptions, Rubin and Dagan [1992] and Zhang and
Neuman [1992] presented solutions to velocity covariances.
Osnes [1995, 1998] derived analytical solutions to head and
velocity moments for steady state uniform mean flow in a
rectangular domain with a separable exponential covariance
function of the log transmissivity. Recently, Riva et al. [2001]
and Guadagnini et al. [2003] derived analytical solutions for
steady state radial flow in bounded heterogeneous domains.
To our knowledge, analytical solutions for head and velocity
moments for transient flow are not available in the literature.
In this study, we present analytical solutions to head and
velocity covariances for transient flow in a two-dimensional
statistically homogeneous porous medium with a separable
exponential covariance function of the log transmissivity. We
assume that the boundary conditions are deterministic and the
only source of uncertainty is the variability of transmissivity.
It is also assumed that the flow is initially under steady state
and the initial head uncertainty is unknown (to be determined
later) rather than specified in advance.

2. Mathematical Derivation
2.1. Statement of the Problem

[4] We consider transient flow in saturated two-dimen-
sional bounded randomly heterogeneous porous media gov-
erned by the following continuity equation and Darcy’s law
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V-q(x,z)fsah(at’t), xeEN >0 (1)
q(x,t) = —T(x)Vh(x,1), (2)
with boundary and initial conditions
h(X, l) = H,, x1 =0, t>0, (33)
h(x,t) = H,, x =Ly, >0, (3b)
8h(X, t)/8x2 =0, X =0, t>0, (3C)
8h(x, l)/aX2 =0, Xy =1Ly, t>0, (3d)
h(x,t) = Hy(x), xe€Q, t=0, (3e)

where A(x, ?) is the hydraulic head, ¢(x, ¢) is the specific
discharge, H, and H, are prescribed constant heads, Hy(x) is
the initial head in the domain €2, T'is the transmissivity, S is
storativity, X = (x1, x,) is the vector of Cartesian coordinates,
L, and L, are the lengths of the flow domain in x; and x,
directions, and ¢ is time. Here we assume that A, and H,
are deterministic constants while Hy(x) is specified with
uncertainty: Ho(x) = (Ho(x)) + Ho(x) where (H,) and Hy'(x)
are respectively the mean and perturbation. It is also
assumed that S is a deterministic constant whereas 7 is a
spatially correlated stationary random function following
a lognormal distribution, and we work with the log-
transformed variable Y(x) = In[7(x)] = (¥) + Y'(x), where
(Y) and Y'(x) are the mean and the perturbation of the log
transmissivity, respectively. Accordingly, the hydraulic head
and flux are also random functions and can be decomposed
as h(x, £) = hO%x, ) + ', 6 + -+, q(x, 1) = qOx, 1) +
q"(x, 1) + - - -, where the order of each term in this series is in
terms of oy the standard deviation of the log transmissivity.
Our aim is to solve for the statistics (mean and covariance)
of head and flux.

2.2. First-Order Mean Head and Mean Flux

[5] Upon combining (1) and (2), substituting decompo-
sitions of A(x, 7), Hy(x), and 7(x) = exp(Y(x)) =~ Tg[l +
Y(x)], where T is the geometric mean of transmissivity,
into the derived equation with boundary and initial con-
ditions (3), and collecting terms at zeroth order, one obtains
the following equation:

azh(aoi(%x, t) 82h(a°;éx, 0 _ TEG ah(();(tx, t)7 xeQ, 150, (4)
with boundary and initial conditions

WOx,0)=H,, x =0, ¢>0, (5a)

WOx,6)=H,, x; =L, t>0, (5b)

OO (x,0)/0x; =0,  x3=0, >0, (5¢)

OO (x,1)/0x, =0,  xy =1Ly, t>0, (5d)

KO(x,0) = (Hy(x)), xe. (5¢)

Certainly, the first-order transient mean head depends on the
initial mean head. Here we choose a special case: (Hy(x)) =
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Hyy + (Hyy — Hyp)x1/Ly, i.e., assuming a steady state initial
condition with initial gradient of Jy = (H;o — Ha0)/L,. At
time ¢ = 0, the head values at two constant head boundaries
are changed to H; and H,, respectively. The solution to (4)—
(5) for such a scenario can be expressed as an infinite series
(Appendix A):

2 N sin(ayx) I
(0) -~ m [(H —(=1)"H > ot
" (x,1) I mz:; o 10— (=1)"Hy ) e
m TG,
(= (=) (1= e ¥, (6)
where o, = mw/L;, m =1, 2, - - -. Each term in this series is

a weighted average of the effect of the constant head
boundaries at time # = 0 and ¢ > 0. Utilizing the identities
Sopoysin(kz)/k = (v — z)/2 for 0 < z < 27 and
S (=D Tsin(kz)k = z/2 for —m < z < w, it can be
verified that for =0 and ¢ = oo, (6) reduces to A*(x, 0) =
Hl() + (HZ() — H]())_X]/L] and h(o) X, OO) = H] + (H2 — H])X]/
L;. For any time 0 < ¢ < o0, ¢ )(x, ?) has to be evaluated
numerically. Since sin(o,,x;) = 0 at two constant head
boundaries x; = 0 and x; = L;, the value of any truncated
finite summation of (6) at these two constant head
boundaries will be zero. To avoid this, we may rewrite (6)
in an alternative form:

>N by sin(oy,xy )
e

H, — H,
2 lXl-ﬁ-

2 _Ig 2,
I S Y 7
L L » ()

/’l(o)(X7 t) =H, +

m=1 Com

where b,, = (H,o — H,) — (—1)"(H>y — H>). Note that the
terms in the series of (7) are dampened exponentially with a
rate coefficient of T;o2/S and thus the solution can be
approximated by keeping only those terms with a high
spectral density. For a large time ¢, only a few leading terms
are required to approximate the solution because these
leading terms account for most of the spectral density. On
the other hand, for time ¢t — 0, a large number of terms are
needed to accurately approximate the solution.

[6] Similarly, after substituting decompositions of q(x, ),
h(x, £), and Y(x) into (2) and collecting terms at the zeroth
order, one has

q(O)(Xv t) = _TGVh(O)(X> t)v (8)

or, by utilizing (7), one has the following expressions for the
flux components:

Oy 5 _ 2
q, (x,1) =Tg Jl—L—
1

77—00(2[
by coS(Quyxy )™
—1

©)

m

) (x,1) =0,

where J; = (Hy — H,)/L; is the final steady state mean
hydraulic gradient.

2.3. First-Order Head Perturbations
[7] The equation for the first-order term A" reads

s on(x,t)

*h(x,6) 9 [, . 0hO(x)
7+71(Y(X) ) TG (’)t )

ox? Ox; Ox;

t>0,

(10)

x €,
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where summation over repeated index is implied. Boundary
and initial conditions corresponding to (10) are

WV(x,1) =0, x1=0 or xy =1Ly, t>0, (11a)

onV(x,1)/0x, = 0, t>0, (11b)

X2:0 or x» :Lz,

V(x,0) = Hj(x) xe€Q. (11c)

[s] We have to emphasize that the perturbation of the
initial head Hy'(x) depends on the variability of Y(x) and
therefore cannot be arbitrarily assigned. By assuming that the
flow system is initially in steady state, the functional form of
the unknown initial perturbation can be determined later.
Equations (10)—(11) can be solved analytically (Appendix B)
and the solution is

00 -
Z a, sin(ou,x;) cos(B,,xz)efTG(“?"*Bg)’

4J, i @y 0oy sin( X1 ) cos(B3,X2)
og, + 6,

: Vax —
cos(B,x})dx DL,S 2
n=0

- sin(oy,x;) cos(B,x2) / Y'(x') cos (auux] ) cos(oux))
Jo

- cos(B,x5)dx’, (12)

where 3, =nn/L,,n=0,1,2,...,a,=1forn>0anda,=1/2
for n = 0, terms b, and Py,,,(¢) are defined in Appendix B.
Since Py,,,,(0) =0, it can be verified that h(l)(x, 0)=H'(x). By
taking the limit of (12) as # — oo, one obtains the steady state
solution of the head perturbation:

4J) = a0y sin(oy,xy) cos(B,x0
0 00) = 1 3 e [y

- cos (X} ) cos(B,x5)dx’. (13)
In particular, the initial head perturbation Hy'(x) can be
written as

4Jy = @y sin(ogxy) cos(B xz)/
H(x) = — U Y'(x'
ox) = mE_(} o2+ B A (x)

- cos (o) ) cos(B,x5)dx, (14)
which will be used to formulate the (cross) covariance Cyz,

and Cy, that are required in solving for transient head
covariances.

2.4. Steady State Second Moments of Head

[o] The cross covariance between the log transmissivity
and the steady state hydraulic head can be obtained by
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writing (13) in terms of a reference point y, multiplying
Y(x) to the resulting equation, and taking the mean,

Cra(x,y) = (Y'(x) A (y, 00))
44 i a0 SN (1) cos(B3,32)
B o2 4 B2

Ry (x), (15)

m=1
n=0

where R,,,(x) = [oCy(x, X') cos(a,x1) cos(B,x5)dx’, and
Cy(x, x') = (Y/(x)Y'(x')) is the covariance of the log
transmissivity Y. As done by Osnes [1995] and Rubin and
Dagan [1988], we choose Cy as a separable exponential
function:

(16)

A e
» N )

Cy(x,x') = 0% exp(

where 0% is the variance of ¥, and X\; and X\, are the
correlation lengths of Yin x; and x, directions, respectively.
For this particular covariance function, R,,,(x) can be found
analytically:
2
Rmn(X) _ . >\1>\20'§ .
(2N + 1) (BN + 1)

. [2 COS(Omel) e /N (_1)"’e(x1*L1)/N]

x [2c08(8,m) — e = (—ayelnt] 1)
The steadgl state head covariance can be derived by multi-
plying #"(y, o0) to (13), taking the mean, and substituting
(15) into the derived equation

16J7 &
Ch(xvy): D2 m;]:]

n,n =0

iy, O O, sin(aux1) cos(B,x2) sin( oy, 1) cos(B,,2)
(o +62) (o3, +87,)
. (18)

myn?

where
Oony = /QRmm, (x') cos(cunxt ) cos (B,xz ) dx’
B PNPTeS
NCEEDIGED)
R
Q2N+ 1

. |:L16mm1 [1 + (—1)m+ml][(—l)”1€7Ll/>\l _ 1]:|

° (6nn| + 6n06n10)L2 +

i o
n\2

(19)

and ¢ is the Kronecker delta function.
[10] Equation (18) leads to the steady state head variance

16J7 &
s = 5 5
m,mlzol

n,n =

Gy, Oy Oy, SN (X1 ) €O8(B,x2) sin (v, x1) cos (B, x2)
(e, +82) (02, +8,)
n (20)

myng®

Certainly, the expressions for the head covariance and head
variance, i.e., (18) and (20), are much simpler than those of
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Osnes [1995, equations (14)—(15)]. Note that the expres-
sions for the cross covariance (Y'(x)Ho(y)) and autocovar-
iance Cp (X, y) can be written similarly as (15) and (18),
simply replacing J; in these equations by the initial
hydraulic gradient J;.

[11] From (19) and (20), it is seen that the steady state
head variance is proportional to 0%, as expected. However,
the dependence of the head variance on the correlation
lengths is not obvious. For the case of \; — 0 and X\, — 0,
which corresponds to the case with a white noise covariance
function, it is easy to find from (C7) that Oy,7,; — 0 and
thus the head variance is zero. This is consistent with the
results of Dagan [1985] for an exponential covariance
function in an unbounded domain. For the case with large
correlation lengths, if the field is isotropic, one finds from
(19) that limy, —y,—0On1,1 = 0 and the head variance is zero.
As a matter of the fact, the transmissivity field in this case
becomes a random constant, which results in a zero head
variance everywhere in the domain. Unlike the case of an
isotropic covariance function in an unbounded domain, in
which the head variance increases from zero to infinity as
the correlation length increases from zero to infinity, for a
bounded isotropic domain the head variance increases from
zero to a certain value as the correlation length increases
and then decreases to zero again as the correlation length
approaches infinity. This phenomenon has been observed in
the previous study [Zhang and Lu, 2004, Figure 3].

[12] Equations (19)and (20) can also be used to analyze the
behaviors of the head variance for the anisotropic field. For
the case with a fixed \, and for \; — 0o, which is the case of
bedding parallel to the mean flow direction, it can be shown
that O;,1,1 — 0 and the head variance is zero. However, for a
fixed \; and \,— oo (bedding perpendicular to the mean
flow, the head variance computed from (20) is infinity.

2.5. Transient Second Moments of Head

[13] The transient cross covariance Cy,(x;y, T) and Cj(X,
t; 'y, T) can be derived from (12) as (see Appendix C)

- i i @y Oty SN (1) COS(B"yz)R,m(X)Jm,,(T)

Cyn(x5y, T
( o2, +6;

876 ~
DLlG Z pbyPronn (T) 0y sIn( v y1 ) cos(B,2)

n= O
. kan (X)7

Colx.t ) 16 = @ny, QO QMM SC
X0y, 7) = — E

D? 2 2
iy 0+ 8) (o, +83,)

21

()T, (T)

_ 32Tg i Ann, O oy bty Py, (1) SC
DZLIS m,my k=1 chn + Bi
n,np=0
32T &
. vy
Qk m” DleS m;(:l
nn =0
ananl OLmOLmlkakmn SC kan J 64Té‘
. (sz + Bi] o mlnl DZL%SZ
Z apdpy, umOLm]bkbklpkmn(Z)Pklmml (T)
my k=1
n,n =0
-SC ghmim (22)
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where
SC = sin(oy,y1) cos(B,2) sin(oy, x1) cos(B,,x2), (23)
Tun(®) = [+ (o —)e Flmsi ] (24)

and all other terms are given in Appendix C. By taking the
limit as t — oo, (21) and (22) reduce to (15) and (18).

2.6. Second Moments of Flux
[14] The first-order flux can be written as

a"(x,1) = =TeVA (x,1) + ¥ (x)q (x, 1) (25)
or in the component form
(1)
0 (x,1) = —TGW’TEXO+ Y(x)q(x,6), i=12 (26
Multiplying Y'(y) on (26) and taking the mean yields
Crg (yix. 1) = (V' (v)g)" (x.1))
ICy(y; x, t
= 1 2R 06 Gy @)
Xi
More specifically, (27) can be expanded as
4T >
Cry, (vix. 1) = ¢ (x, ) Cy (x —= Z
=
a, 02, cos(ou,xy) cos(B,x2)
. 4 R (V) (2
e (¥ (1)
3T S 4, Pan (1) cos(cun) cos(B, )
DL1S Mk:]an kOLm fmn COS(QupX1 ) COS(1D,X2
n=0
“ Rignn (¥) (28)
and
4Tg @B, sin(ou,x1) sin(B3,x2)
CYqz (ya X, t) D ; 092,, + Bi
n=0
8T¢ pagcs
Rmn (y)Jmn( DL1S Z anbkumﬁnpkmn( )
n 0
- sin(ou,x1) $in(B,x2) Rignn (¥)- (29)

The flux covariance g;(X, t; y, T) = (g (x, t)q,(-l)(y, T)) can
be derived from (26):

PCu(x,t;y,7) (0) ICy(y; X, 1)
(X 1 _ e L\ EYT) o gty X, 1)
(]_/ (X7 Z, Y7 T) G axiayj (y7 T) axl_
OCy(x;y, T
75,0 PRI 00 4y gf0y,
Vi
-Cy(x,y),4,j = 1,2, (30)
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which can be elaborated as and
16T2 X a,a, 020l QMM CC 1672 N anan, 0oy, 3,3, QMM SS
‘Ill(x7 t; y, T) - — ’; p 5 Jmn(t)Jm1n1 (T) q22(X7 f; y, T) = DZG 1 5 S mnz Jmn(t)
mam (o2, +8;) (oafm + Bm> mm =1 (o2 +B;) (u,z,,l + Bm)
5 st T
D LIS mymy k=1 QG + Bn 1S m,my k=1
n,n; =0 n,n =0
imim g (l) 32Té i anamOLmOLmlBanlth/qmlm (T)SS Qk,mln]J ( )
— A = mn
mn mn DZLIS i Oégn + Bi mn
mm=0 327 z“: Ay O B3, i Pronn (£)SS
ananlam@m,bkpkmn( )CC mn (T) D2L,S o2 + Bz
2 mym Y ming m,nn,ﬁ:l my n
uml + Bnl n,n; =0
64T: & - 04T
Dszgz Z audp, 04,,, mlbkbklpkmn( ) “Xmm ’”‘”'( ) +1)2[1252 Z B
1 m.my k=1 momy k ki =1
S =0 n,n =0
- 4TGq1 Anln, OLmO‘mlBanlbkbklPkmn(t)Pknmunl( )
1mpng
Promm, (T)CC Oy Zl .SSQ]En’V:lI”I7 (33)
=0
2
a0 cos(au,xy) cos(B,x2) where
0‘%« +B;21 Ry (Y)Tun (1)
872 40 (y. 1) & SC = sin(oyuy1) sin(B,2) cos(oy,x1) cos(B,,x2),
+ qu)i gy ) Z anbi Pionn (t)ui cos(,X1)
I mk1 CC = cos(amy1) cos(B,12) cos(au, x1) cos (B, x2) (34)
4T, . . :
- c08(8,%2 ) Ren (¥) — qu (x,1) Z S8 = sin(cuuy1) sin(B,y2) sin(au, x1) sin(8,,,x2)
m=1
"~ The expression for ¢,; has been omitted, because of the fact
a, 02, cos(auy1) cos(B,2) p o q .
5 2 Rmn(X)Jmn(T) CI21(X: ta Y, T) - 912()’: T, X, t) Slnce q}(xa OO) = TG‘Jliand
o, + 8, Jn(00) = Jp, the steady state flux covariance can be written
8T2 (x,1) from (31) to (33) as
—ofl =7 ql Z b Pronn (T 04 cos( 1)
DLI mkol 16T2J2 0 a.a 0L2 0L2 gy
n— nln O Qo Y
0 0 qu(x;y) = D§ ! Z R 21 2 — cos(oumyn)
- €08(3,12) Rinn (X) + 9 (x,1) q, (y,7) ’gjmlj]l (OLm + Bn) (OLMI + Bm)
'Cy(X y) (31) ’ 2 12 0
oY), 4T2J
cos(B,12) cos(au, x1 ) cos (B, x2) lG) 1 Z
1672 & auay, 0y SC
q12(x7 t; y, T) — ch : 1 ; mlﬁzQ%n ; Jmn(t) , n=0
"rfl:"?r:lfol (OL,,, * B") (OLMI + Bm) : jn(lm 2 [Rmn (X) COS(OLmyl) COS(BnyZ)
R & o + 5,
() + 5% D + Ry (y) c08(0xy) c08(B,x2)] + T2J% Cy(x, y)
m,my k=1
n,n;=0 (35)
2
il OLmBnOL”;l bkl P;qmml (T) ¢ Q}r(r:);nln]t]mn( )
OL + B . o ]67%./1 > ananl OLmO‘rznl Bn :;';;:m .
32Té~ > apdp, OLmOLm B kakmn( )SC qlz(x7y) - D2 Z 2 2 2 2 Sln(umyl)
5 Z 21 m,mL:Ol (um + Bn) Qo + Bnl
D L]S m,my k=1 OLml + Bnl =
n,n =0 ) 4TéJ12 S
64Té o sin(B,2) cos(u, x1) cos(B,,,xz) +T Z
mn —
oy Iy (T) — m Ek:k 1 m=l
m,my .k = . .
: "17"1:1 anOLmBn Sln(umyl) Sln(ﬁnyZ) R (X) (36)
mn b)
Apdnp, um&il]Bﬂbkbklpkm"(t)Pklmlnl( )SC kan;z]n1 04%1 + Bi
+ 4TG qEO) (X7 t) Z anOLmBn Sin(ZOLmylz Sln(BnyZ) and
D m=1 Gy + Bn
n=0
8T2 q X t 16T(2;J12 = Apdy, Oby Oy, Bnﬁn Q o
: Rmn (X)Jmn(T) —GIL 1 anbkpkmn q22 (’QY) = o) Z ! Sll’l(OLmyl)
DL,S '%:ol D o (02 +82) (uz g )
n= =
sin(B3,,2) sin(qu, x1) sin (B, x2). (37)

3, sin(cunyt) sin(B3,y2) Rignn (X) (32)
5o0f13
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The velocity covariance can be readily formulated from a
simple relationship u (X, #; 'y, T) = g (X, t; y, T/OX)/D(Y),
where ¢ is the porosity of the porous media and is
considered as a deterministic quantity due to its relatively
small variability.

3. Numerical Examples

[15] In this section, we try to examine the convergence
and the accuracy of the analytical solutions for the first-
order transient mean flow quantities and related (cross)
covariances. We consider a two-dimensional rectangular
domain in a saturated heterogeneous porous medium. The
flow domain for our base case is a square of a size L; =L, =
10 (in any consistent length unit), uniformly discretized into
40 x 40 square elements. The no-flow conditions are
prescribed at two lateral boundaries and constant heads
are specified on the left and right boundaries. Initially, the
flow is at steady state with constant heads H;o = 9.5 on the
left boundary and H,, = 9.0 on the right boundary. At time
t = 0, the constant heads on the left and right boundaries are
suddenly changed to H; = 11.0 and H, = 10.0, respectively.
The storativity is a deterministic constant S = 0.005. The
mean of the log transmissivity is given as (¥) = 0.0 (i.e., the
geometric mean of transmissivity 7z = 1.0). The variance
and the correlation lengths of the log transmissivity field for
our base case are 03 = 1.0 and N\; = X\, = 1.0. Unless
specifically mentioned, in all examples we will show results
only along the profile x, = L,/2 = 5.

3.1.

[16] An important aspect of analytical solutions presented
as infinity series is how fast the solutions converge to their
true solutions, or in other words, how many terms should be
included in truncating the series so that the approximations
to these solutions will have a given accuracy. Many factors,
including the aspect ratio of the flow domain and the
correlation lengths of the log transmissivity field, may
impact the rate of convergence. To investigate this, in
addition to the base case, we design two more cases. For
each case, we truncate each individual summation (each
index) in the analytical solutions to the mean head and the
head variance after N terms, where N = 2, 3, 5, 6, and 10.
Figure 1 illustrates the computed transient mean head at
four times 7= 0.0, 0.01, 0.05, and 0.4, using N=2, 3, and 5.
The figure shows that at time ¢ = 0.4, the flow has
reached the final steady state. From the figure we see that
keeping the first two terms in the summation of #¥(x) is
very accurate, except for at early time # = 0.01, in which
keeping the first three terms is accurate enough. In all
examples presented in this study, approximating the mean
head with the first three terms in (7) is sufficiently accurate,
and adding more terms does not significantly improve the
accuracy. Mathematical analysis of the expression for
h(x), i.e., (7), reveals that for an extremely small 7, a very
large number of terms is needed. However, in general, the
series in (7) converges very fast, and therefore, we will
focus our discussion on the head variance. Figure 2 depicts
the head variance as a function of x; along the profile x, =
L,/2 for different values of N. The figure clearly demon-
strates that the rate of convergence depends on the flow
condition. When the flow is close to steady state, for
instance at ¢ = 0.4, approximating the head variance using
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Mean Head (h)

Transient mean head computed using different
numbers of terms, N, in truncating infinite series in (7): the
base case.

Figure 1.

N =3 (i.e., 729 terms in a sixfold summation) will be very
accurate. While at early times, due to the sudden change on
constant head boundary at z = 0, more terms are needed to
approximate the head variance.

[17] To examine the possible effect of the domain geom-
etry (the ratio L,/L,) on the convergence of the solution, we
change the width of the domain to L, = 2 while keeping
everything else the same as in the base case. Numerical
experiments with different numbers of terms included in the
truncated summations are illustrated in Figure 3, which
depicts the mean head and head variance along the profile
X, = Ly/2 = 1.0. The figure, again, shows that the analytical
solution converges faster when the flow is at or near steady
state. In addition, comparing Figures 2 and 3, one finds that
the head variance increases as the domain becomes nar-
rower in the transverse direction.

[18] In the third example, we increase the correlation
lengths of the log transmissivity to X\; = X\, = 5. The results,
as shown in Figure 4, indicate that an increase of the
correlation length enhances the rate of convergence of the
analytical solution (compared to Figure 2).

3.2. Accuracy of Analytical Solutions

[19] We conduct Monte Carlo (MC) simulations to verify
the accuracy of the first-order analytical solutions for
transient head and its related (cross) covariances. First, we
generate 5,000 two-dimensional unconditional realizations
of the log transmissivity with the separable covariance
function as given in (16), using the random field generator
based on the Karhunen-Loeve decomposition, as described
by Zhang and Lu [2004]. The quality of these realizations
has been examined by comparing their sample statistics
(mean, variance, and correlation lengths) with the specified
mean and covariance functions. The comparisons show that
the generated random fields reproduce the specified mean
and covariance functions very well.

[20] For each realization, we solve the steady state flow
equation with the initial constant head Hy¢ = 9.5 and H,, =
9.0 on the left and the right boundaries, using the finite
element heat and mass transfer code (FEHM) of Zyvoloski
et al. [1997]. This steady state head field is then taken as the
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Figure 2. Transient head variance computed using
different numbers of terms, N, in truncating infinite series
in (22): the base case.

initial head Hy(x) for the following transient simulation.
Using the same realization, we run the FEHM code again
for a transient simulation with the new constant heads H; =
11.0 and H, = 10.0 on the left and right boundaries and
record the head at the following times: =0, 0.01, 0.05, and
0.4. This procedure is repeated for all realizations, and the
sample statistics of the transient flow fields, i.e., the mean
predictions of the head and the flux as well as their (cross)
covariances at these times, are computed from realizations.
These flow statistics are considered the “true’ solutions that
are used to evaluate the accuracy of the first-order analytical
solutions.

[21] Figure 5a compares the transient mean head (A(x, 7))
computed from Monte Carlo simulations (MC, solid curves)
and that from the first-order (in oy) analytical solution with
N = 10 (ANA, dashed curves) at various times along the
profile x, = L,/2. It seems from the figure that the mean
head computed from the analytical solution is very close to
the Monte Carlo results, especially at or near steady state.
Also compared in the figure is the first-order mean head
computed from the moment equation method (ME, dash-
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Figure 3. Transient head variance computed using
different numbers of terms in truncating infinite series in
(22): Ly=2.0.

Figure 4. Transient head variance computed using
different numbers of terms in truncating infinite series in
(22) >\]: >\2: 5.0.

dotted curves) [Zhang and Lu, 2004], where the input
covariance function for the ME method is the analytical
expression (16). Figure 5b compares the transient head
variance obtained from the MC simulations, the first-order
analytical solution, and the first-order ME approach at
various times. It is expected that the first-order analytical
solutions should be identical to the results from the first-
order ME method, in the limit that the number of terms, N,
in the truncated finite series of the analytical solutions
approaches infinity. Furthermore, both first-order results
will deviate slightly from the Monte Carlo results, and such
deviations will increase with the increase of the variability
of the log transmissivity. Figure 5 clearly shows that the
analytical solutions are adequately accurate at o} = 1.0,
especially when the flow is at or near steady state.

[22] It is interesting to see from Figure 5b that the head
variance along the profile x, = L,/2 at both the initial and
final steady state is symmetric (larger head variance at the
final steady state due to a larger hydraulic gradient), while at
any unsteady state the curve is asymmetric. For example,
the head variance along the profile has two peaks at time ¢ =
0.01. This may be due to the variable hydraulic gradient
during the unsteady state. Comparison of Figures 5a and 5b
indicates that the larger peak on the variance curve corre-
sponds to a larger hydraulic gradient on the mean head
curve. Furthermore, because the change of the head vari-
ance from the initial head variance is due to the change of
constant head boundaries at # = 0, the variance change starts
from two constant head boundaries and propagates into the
entire flow domain. As a result, at a time before the effect of
the boundary change reaches the entire domain, the head
variance in some region remains the same as the initial head
variance o7y(X) (e.g., a trough at ¢t = 0.01 in Figure 5b).

[23] We should emphasize here that in our comparisons, it
is assumed that the results from Monte Carlo simulations
are accurate. It is possible to estimate the bounds of errors
around the Monte Carlo results, using the procedure pro-
posed by Ballio and Guadagnini [2004]. For example,
given the number of realizations and a confidence level of
95%, the true head variance o7 should satisfy the following
relationship: 0.9625% < o7 < 1.0406S2, where S> is the
sample variance of head from Monte Carlo simulations.
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Figure 5. Comparisons of (a) the transient mean head and (b) the transient head variance computed
from Monte Carlo simulations (solid curves), the first-order analytical solution (dashed curves), and the
first-order moment equation method (dash-dotted curves).

[24] Figure 6a illustrates the cross covariance Cy(X; X, #)
as a function of x; obtained from Monte Carlo simulations
(solid curves) and analytical solutions (dashed curves) at
four elapsed times. It is evident that analytical results are in
good agreement with Monte Carlo results. Note that, at
early time, Cy,(X; X, 7) is much larger than its values at
steady state. This implies that at early time, the effect of the
transmissivity is relatively local, i.e., the transmissivity at
point x has a significant effect on the mean head at the same
point x. Such an effect reduces significantly at later times
because the transmissivity elsewhere in the domain also
impact the mean head at point x.

[25] Figure 6b depicts the cross covariance between the
log transmissivity at the center of domain (L,/2, L,/2) and
the head /A(x, 7) along the profile x, = L,/2, as a function of
X1. Again, analytical results are in good agreement with
Monte Carlo results. It is interesting to note that, at both the
initial and the final steady state, Cy, along this profile is
antisymmetric and Cy;, = 0 for Yand A(x, ?) at the center of
the domain, due to the particular boundary conditions in our

0.10
0.08

d

- 0.06

><'._

& 004

—

% 0.02

=

U
0.00
0.025 2 4 6 8 10

problem. However, at any transient state, Cy;, does not
shown any such kind of symmetry.

[26] Figure 7 shows the covariance of head at (x;, L,/2, f)
and (x;, L,/2, T) as a function of x; and T at two different
times ¢ = 0.00 and ¢ = 0.05, where solid curves stand for the
results from Monte Carlo simulations and dashed curves
from analytical solutions. Note that the head covariance
function between two steady states (= 0.0 and T = 0.0, or
t = 0.0 and T = 0.4) along the central line of the domain is
symmetric (see the curves for 7 = 0.0 and T = 0.4 in
Figure 7a). The difference between these two curves is due
to the difference in the magnitude of the hydraulic gradient.
At unsteady state, the pattern of the head covariance
function depends on the spatial locations and elapsed time.

[27] Comparisons of the mean longitudinal flux obtained
from the MC simulations, the analytical solution, and the
ME method are illustrated in Figure 8, and similar compar-
isons for the flux variance are depicted in Figure 9, where
the plots for a later time # = 0.4 are enlarged in inserts for a
detail view. Clearly, Figures 8—9 once again demonstrate

(b)

0.04

0.02

0.00

Cy(x,, L/2: L /2, L/2,0)

Figure 6. Transient cross-covariance (a) between the log transmissivity Y(x;, L»/2) and the hydraulic
head A(x;, L,/2, f) and (b) between the log transmissivity Y(L;/2, L,/2) and the hydraulic head A(x;,

L2, 9.
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Figure 7. Transient head covariance between head A(x, £) and A(x,T) as a function of x; and time T along

x> = L,/2 for (a) t = 0.0 and (b) ¢t = 0.05.

the accuracy of the analytical solutions. In addition, the
transient flux variance could be significantly larger than the
steady state counterpart.

4. Conclusions

[28] This study leads to the following conclusions.

[20] 1. Statistical moments for transient flow in two-
dimensional bounded randomly heterogeneous media are
amenable to analytical solutions. We derive analytical
solutions to the moments (mean and covariance of both
the hydraulic head and the flux) for transient saturated flow
in two-dimensional bounded, randomly heterogeneous po-
rous media, assuming that the flow is initially at steady
state. More specifically, we first obtain partial differential
equations governing the zeroth-order head 4 and the first-
order head term A‘", using perturbation expansions. We
then solve #® and A" analytically. The head perturbation
K" is used to derive expressions for autocovariance of the
hydraulic head and the cross covariance between the log
transmissivity and the head. Upon solving for the head
moments, the expressions for the mean flux and flux
covariance tensor are formulated based on Darcy’s law.
These solutions are presented as infinite series.

[30] 2. Numerical experiments have been conducted to
evaluate the convergence of these analytical solutions. It has
been shown that the rate of convergence depends on the
flow condition, the aspect ratio of the flow domain (L,/L,),
and the correlation lengths of the transmissivity. When the
flow is at or near steady state, the analytical solutions
converge very fast, and for unsteady flow, more terms in
the truncated finite series are required to approximate
the statistical moments. In addition, a large aspect ratio
enhances the rate of convergence. Furthermore, large cor-
relation lengths lead to fast convergence. Finally, the
solutions for the mean quantities converge faster than do
the solutions for the second moments.

[31] 3. The accuracy of these first-order analytical
solutions has been examined by comparing them with
solutions from both Monte Carlo simulations and the
numerical moment equation method. The numerical
experiments clearly show that the first-order analytical
solutions are adequately accurate at least for o3 = 1.0.

[32] 4. The initial steady state uncertainty on the head in
this study is determined rather than arbitrarily prescribed,
under the assumption that the variability of the log
permeability is the only source of uncertainty. This allows
us to apply the analytical solutions recursively if needed
(e.g., owing to changes on boundary conditions): the
solved steady state solutions can be further taken as the
initial condition to predict responses of flow moments due
to such changes.

Appendix A: Zeroth-Order Mean Head hV(x, 7)

[33] Here we briefly outline the procedure for solving
the following equation for the zeroth-order mean head
KO, 1):

PnO(x,1)
Ox?

PhO(x,1)
0x3

S 0n(x, 1)

T Te ot

(A1)

e
%

o
o

<o
~

I
o

Mean Flux {(q,)

0.0

Figure 8. Comparisons of the transient mean longitudinal
flux computed from Monte Carlo simulations (solid curves),
the first-order analytical solution (dashed curves), and the
first-order moment equation method (dash-dotted curves).
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Figure 9. Comparisons of (a) the longitudinal flux variance and (b) the transverse flux variance
computed from Monte Carlo simulations (solid curves), the first-order analytical solution (dashed
curves), and the first-order moment equation method (dash-dotted curves).

with boundary conditions and initial conditions as shown
in (5a)—(5e). Under the given boundary conditions, by
using an integral transformation [Ozisik, 1989],

h*(OLm, Bn’ t) = / K(OLWHXI ) K(BlﬁxZ) h(O) (X7 t) dx? (Az)
Q
where kernels
K (o, x1) = \/Lzsin((xmxl), (A3)
1
2 .
\/L:cos(ﬁnxz) if n#0,
K(Bmx2> = 12 ’ (A4)
— if n=0,
L
and o, = mw/Ly, m 4 B,=nm/Ly,,n=0,1,--- (Al)

is transformed to a first-order ordinary differential equation,
T

dh*(um76n$[) + (

dt S +Bz)h*(@mvﬁn7 )_ (OLWHan )v (AS)

with the initial condition

/K 0(,,17)(?]

which is the transformation of the initial condition (5e). It
should be noted that the integral transformation presented in
(A2)—(A4) can be considered as the Fourier transformation
in the two-dimensional space, by which the partial
differential equation (Al) is transformed into an ordinary
differential equation of the Fourier coefficients, i.e., (AS5).
The term on the right-hand side of (AS5) is related to
boundary conditions of the original zeroth-order equation:

K(By,x2) (Ho(x)) dx, (A6)

OLm7

TG |dK (o, x1) L
A my P ) =~ | = K ny H\d
(OL B ) S dxl x1=0 Jx2=0 (B XZ) 1
dK (con, =
+ M K(BIHXZ)HZ de
dxl xj=L; Jx2=0
0 if n#0,
N1 2L - (A7)
= L—lzocm(Hl — (=1)"H,) ifn=0,

Equation (A5) with the initial condition (A6) can be solved
easily:

ot

h*(&mvﬁml) = F*(umvﬁn) + /

J1'=0

e%(“z’%i)ﬂ/l(um, 3,.7)dt,
(A8)

and the solution for A¥)(x, 7) can be derived from back
transformation of 4*(w,,, 3, ©):

hO)(x,1) = e FOHE) K (0,310 )K (B, 32)H* (0t By, 1)

N
N

3
I
Il
S

T

e*%(a +B) K(um,xl)K(Bn,xz)/K((x,,,,x’l)
Q

I
Mz
Mz

Il
IS

m=1 n

’K(Bmx,z) (Ho(x")) dx’ +L271 i M

Qim

(Hy = (=1)"Hy) (1= i), (A9)

Assuming (Ho(x)) = Hyo + (Hao — Hio) x1/L1, (A9) reduces

to
2 S sin(ax
7?2 m 1 [H]()—(_l)mHz())e s“m’

+(Hy - (-1) Hz>(1 e Foi)]. (A10)
For boundary conditions other than those shown in (5a)—
(5d), transformations similar to (A2) can be used upon
replacing with appropriate kernels [Ozisik, 1989].

Appendix B: Head Perturbation #'(x, 7)
[34] Perturbation term A‘"(x, 7) reads as
PhV(x,0) 0 [, OhO(x,0)\ S ohV(x,1)
o2 +m(”) wi)*i a v B

with boundary conditions and initial conditions as shown in
(11). Similarly, using an integral transformation [Ozisik,
1989],

7 (0ons B 1) = /Q K(om 1) K@) AV (x,0)dx,  (B2)
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where kernels are given in (A3)—(A4), (B1) is transformed
to a first-order ordinary differential equation,
dh*(um76n7t) TG
i s
with the initial condition F*(q,,, 3,) = f oK(ay,, x1)K(B,,
x,)Hg(x)dx. The solution to (B3) can be formally expressed
as

+Bz)h*(um36n7 )_ (OLm?Bm )7 (BS)

t ,
(0B 1) = F*(0,8,) + / ) (o, B, )
=0
(B4)

and the solution for 4"(x, 7) can be derived from the back
transformation of 4*(o,,, 3, £):

T

oo o0
DM

m=1 n=0

K (0o X1)K (B, %2)B* (0, B, 7).
(BS)
[35] The term on the rlght-hand side of (B3) is related to

boundary conditions for 2" and the source term, i.e., the
second term on the left-hand side of (B1):

Ao /K Oy X1) xz)aa <Y’( )M)

axl-

(B6)
Substituting h(o)(x, f) into (B6) and carrying out integration
yields

2, Teon,
Aoy, B,,t) = % / Y'(x') cos(uux] ) cos(B,x5)dx’
4TGOLm T2 "
\/ZTL—zSZbke fod / Y'(x') cos (aunx})
- cos (ayx} ) cos(B,x5 ) dx’ (B7)
for n # 0 and
V21 Toa 2V2T5q,
A0, By, 1) = 7m/Y' x') cos (o) )dx’ — ="
( o) \/Ll—LzS Q () cos ) LiVL LS
Zbke S‘”/ Y'(x') cos(auux] ) cos(oux])dx/,
(B8)

for n = 0. Substituting A(q,,, 8,, ¢) and F*(q,,, 3,) into (B4)
and combining the latter with (B5), one obtains the solution
for A'V(x, #):

4
WV(x,1) = 5 Zan sin(ou,x1) cos(B,x2)e Fod+8)e

m=1 Q
n=0

Hy(x)

N
=~

NgE

- sin (o} ) cos(B,x5)dx’ + 3

_ ef%(u,z,ﬁrﬂﬁ)t} / Y/(X/)
JQ

8TG i

33
Iyl
O

@l sin(oy,x1 ) cos(B,x2) [1
o2, +6;

- cos oy} ) cos(B,x5)dx’ —

Y'(x') cos

s—.1L

< @b Pronn () ot sin(ouxy ) cos(B,x2)

+ (umx]) cos(oyx]) cos(B,x5)dx’, (B9)
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where D=L,L,,a,,=1forn > 1 and a,, = 1/2 for n =0 and

S eilﬁf' e S(“ +; )¢ if 2 7& 2 +B2
ey s m— 1 OLk (e
Pkmrl (l) _ TG (y2+5 (\ ) m n’ (BIO)
TG (2 132 .
te’s (““3")’, if of = o + B2

The steady state solution of the head perturbation can be
derived by taking the limit of (B9) as t — oc:

)/QY/(X/)COS

(BI1)

4h

i @y sin(u,xy) cos(3,x2
D

h(l)(x7 OO) = (Xz + B2

m:l

((xmx/l) cos(B,x5)dx’

Appendix C: Head Covariance

[36] Equation (B9) and taking ensemble mean yields an
expression for head covariance:

x, 0) i (y, 7))
ay, sin(oy,x; ) cos(B,x2)e” (2 4p2)0 /

Q

Ch(X7 Ly, T )

MS,\

(n!
4
D

i

=

=0

(HH(x' YAV (y, 7)) sin (o)) cos (B, )dx’
4J Oy SIn(ux1 ) cos(B3,X2)

n Dl Z 1 2

m=1 0Lzm + 63
n=0
~1G (2 +B2 )1 ‘. 4
e Cyn(x';y, T) cos oy} )
0
8T =
- cos(B,x5)dx’ — DLIGS Z bk Prnn (1)
mk=1

n=

- sin(oy,x1) cos(B,x2) / Cy(X5y,T)
0
- cos (X} ) cos(aux] ) cos(B,x, )dx’. (C1)
Here the cross covariance between head at space-time (y, T)
and initial head at location x, (H{(x)A"(y, 7)), can be

derived by rewriting (B9) in terms of (y, 7), multiplying
Hy(x) to the derived equation, and taking the mean:

o(x) A (y, 7))

CHoh( ) <

4 =

— o Sin(cuy1) cos(B,n)e” Fh48) /
D=

Q

]:

.Jk

Jli

m

- Cpp (X', X) sin (o) ) cos (B,x5)d

I
sh

n
. apQyy Sin(umyl) COS(Bny2) [1 ((x +32)T

ol + B,

[A—

J

876
DL,S

T) 0wy sin( o,y ) cos(B,2) /

Q

- Cyp, (X', X) cos (uux] ) cos(B,x5)dx’ —

: Z ankakmn
mk 1
~0

- Cyny (X', X) cos (x| ) cos(aux]) cos(B,x5)dx’

(€2)

As mentioned early, we assume that the flow is initially at
steady state and the perturbation of the initial head H(x) is
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determined from the steady state condition. Therefore
Cyp,(x', x) and Cp(x/, X) can be obtained by replacing J;
in (15) and (18) by Jy, the initial hydraulic gradient.
Substituting Cygy, and Cp, into (C2) and carrying out
integrations, one has

Crion(x:y,7) = (Ho(x) K (y, )
16J i @, oy Oy, Ot SC
=T
DY im0, +87) (ufnl + Bﬁl)

nn=

T (T)

32J0TG i ananlbkpkmn(T)umun1] fnr:lZlSC
DZLIS m,my k=1 (OL)Zn + Bi ) 7
n,n;=0 ! !
(C3)
where
SC = sin(oy,y1) cos(B,)2) sin(oy,, x1) cos (Bmxz), (C4)
Ty (T) = [_]1 + (o — Jl)ef%(a%,mi)r} (C5)

Ryn (x) = / Cy (x,x) cos(au,x} ) cos(B,,x5)dx’
Q
_ )\1>\20‘§/
(2 +1) (8203 +1)
. [2 cos(un,x1) — e /™ (fl)m‘e(’“*L‘)/x‘}

: [2 cos(B,x2) — e/ — (—1)"'6('“_“)/“}, (C6)
o', :/le,,, (x) cos(auxy) cos(B,x2)dx
Q
_ >\1>\20'%,
(2 1) (8223 +1)
>\1 m-+m
Ly Sy + = (1 + (—1)"™
[ : +u3nx§+1( =)
.((—])me*Ll/Xl _ ]>:| |:L2(6m,1 + 6,106,110)
+L (14 (=1)™™) ((71)"5“/*2 - 1) (C7)
BN + 1 ’

04, = [ R () 0s(ou) cos(am) cos(B,x2)dx
B ’ Moo
- 23 N+ 1) (B3 +1)
L1 By sk + Oy 4k + Skmtm, )
N (Mg 1) (1 (=D)™™) ((*l)me_L'/x' - 1)]

>\2 n+n
— 2 (14 (=1
+BﬁX§+ 1( + (="

(et )]

° |:L2(6nn| + 6r106n|0)

(C8)

andl Mok = [0 — T+ 117" Mk = [(u + c)™\T +
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[37] Similarly, the cross covariance Cy,(x’; y, T) =
(Y(x)h"(y, T)) can be derived as

4 S a0y sin(oy,yy ) cos(B,02)
C Xy, T) =— Ry (X) T (T
sy, ) = > S S (5)m(7)
n=0
_ 8o iabP (1) sin(uy1 ) cos(B,2)
DLISmk71 nOkL jmn T ) Qi mY1 n)2
n=0
: kan (X)a (C9)
where

Rign (X) = /QCy(x’,x) cos (X} ) cos (oyx] ) cos(B,x5)dx’

o >\1>\20‘§;
2N +)
{2 m) cos[(cu + ou)xi] + 2m,, cos[(u — oy )x]

= (e + k) {e’x'/x' + (fl)me(xlle)/N] }

X [2 cos(B,x2) — e/ (71)'76()(2_1‘2)/)\2]. (C10)

After substituting Cr4(X; y, T) and Cy(x; y, T) into (C1)
and carrying out integrations gives

i §C
=S ()T (7)

mymy=1 (OLzm + Bi) (OL,znl + Bf”)

n,n =0

32T
D2 Z
D L]S m,my k=1
nn =0

oo
16 Ay, Oy Oty

C},(X, Ly, T) :E

Ay, Oy Oy, by Py, (T) SC —
: Jun (1
OL,zn Bﬁ Qf{nn mn( )
Anly, Oy Oy, D P (£)SC

7
(x%n] +8;,

3276
DL,S

m,my k=1
n,np=0

64Te o
i
: er:’zl‘]'ﬂlm (T) + DZL%§2 Z]k
mmy k k=1
nn =

- @t OO, BicDiy P () Py, n, (T)SC Q™
(1)

where

’,;n",’l‘"‘ = /Qka,,(x) cos( oy, x1) €08 ( 0y, 1) €08 (B, X2 )dx

>\1>\2O‘2

= m m;k (6m+k,m1+k1 + 6k1,m+k+m1
+ Sy mrkrky) + L0 (St +h1 + Sonfem 4
+ Omtmy ktky F Omrkymy+k) + N1 (ﬂy;k + n:;k)

: (nr;]k, +ﬂ;,k,> (1 + (*l)mﬂf)

) <(71)m1+kle—L1/>\| _ 1):| |:L2(6nm + 6,,06,”0)

e O (e )]
m~2 (C12)
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In particular, letting = oo and T = oo, we obtain the steady
state head variance

162 &N a,ay, 0y, QM SC
Crxy) =" > (C13)

iy (06 +67) (03, +)

n,n =
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